4=-16t^2+80t+224

Simple and best practice solution for 4=-16t^2+80t+224 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4=-16t^2+80t+224 equation:



4=-16t^2+80t+224
We move all terms to the left:
4-(-16t^2+80t+224)=0
We get rid of parentheses
16t^2-80t-224+4=0
We add all the numbers together, and all the variables
16t^2-80t-220=0
a = 16; b = -80; c = -220;
Δ = b2-4ac
Δ = -802-4·16·(-220)
Δ = 20480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20480}=\sqrt{4096*5}=\sqrt{4096}*\sqrt{5}=64\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-64\sqrt{5}}{2*16}=\frac{80-64\sqrt{5}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+64\sqrt{5}}{2*16}=\frac{80+64\sqrt{5}}{32} $

See similar equations:

| 7–8r=-41 | | x^2+9x=−8 | | (3x-14)+(x+38)=360 | | -38=-2-4d | | X(x)-13x-12=-42 | | -2(y-2/5)=2(y+1/2) | | h+118/9=32 | | 100=x(20-x) | | f(×)=2×+1 | | 23(h-979)=460 | | 50x+3=203 | | 0.07(2t-8)=0.14(t+2)-0.84 | | 13(c+39)=689 | | m2-(-6)=12 | | 15t+-2=17 | | 3x-21=5x-21 | | 2c-(-3)=23 | | 4(x-8)^2-34=-18 | | p+3p=8 | | 4^(3x-5)=12 | | 2(2)-13x-12=-42 | | 5k+(6k+4)-29k=16 | | 3/a+3-1/a-2=5 | | -3b+30-(-2b)=-45 | | y=2.45+10 | | -18=a+2-2a | | 5x*3-1+2.3=0 | | n-(-10)=50 | | a/2=a+2 | | -1/5x-12=0.2x-24/2 | | 2x-10+4x-3=145 | | 2p+10=2p-6 |

Equations solver categories